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Comment on “Intermittency in chaotic rotations”
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Lai et al.[Phys. Rev. 62, R29(2000] claim that the angular velocity of the phase point moving along the
chaotic trajectory in a properly chosen projectitime instantaneous frequendg intermittent. Using the same
examples, namely the Rsler and the Lorenz systems, we show the absence of intermittency in the dynamics
of the instantaneous frequency. This is confirmed by demonstrating that the phase dynamics exhibits normal
diffusion. We argue that the nonintermittent behavior is generic.
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Phase dynamics of chaotic oscillators attracts a large inH we introduce the phase as= arctanf/x), then the instan-
terest[1-7]. It was demonstrated that the behavior of manytaneous frequency= ¢ is
real-world and model autonomous chaotic systems can be
regarded as oscillations with irregular amplitude and phase.

The amplitude is chaotic, while the phase, as the variable w=1+—"--,
corresponding to the time shiftsand thus to the zero Xty
Lyapunov exponent exhibits a random-walk-type motion.

The mean velocity of the phase growth can be interpreted ds€-, the frequency is just an observable of the dynamical
the mean frequency of the chaotic oscillator, and the diffuSystem(1), and, generically, is neither better nor worse than
sion of the phase is due to fluctuations of the instantaneoudNy other observable. To demonstrate that this observable
frequency. possesses no special intermittent properties, we plot in Fig. 1

Recently, Laiet al. [8] claimed that the dynamics of the
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instantaneous frequency typically exhibits the on-off inter-
mittency. We note that speaking about “chaotic rotations,”
they consider not rotations in a physical spéeg., rotations 8r i
of a mechanical pendulumbut rotations of the phase point 3 5l i
in a projection of a strange attractor, i.e., rotations here are WWL‘
the phase-space representation of chaotic oscillations. La 1
et al. [8] state that the intermittency is an inherent generic - : :
property of continuous-time chaotic systems. As examples, 6 - ' '
the Rasler and the Lorenz systems are considerd@jinin
this Comment we argue that the dynamics of the instanta-< 41 .
neous frequency is not intermittent both in the general case_®
and in the mentioned examples in particular. 's 2| .
As the presence of intermittency fi] is mainly argued ™ l
by means of the visual inspection of the time course of the 0 : h . ‘ l .
instantaneous frequency, we first show that this inspection is 40 - ' '
misleading. For this purpose we consider thes&er system a0 | 1
with the same parametera0.165,b=0.2,c=10) as in
[1] N 20 | .
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FIG. 1. The time dependencies of different observables for the
Rossler system: instantaneous frequengy) computed according
*URL: http://www.stat.physik.uni-potsdam.de to Eq. (2), €O, z(t), and loggz(t).
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its time dependence, together with time dependencies o 20 ' a)
some other observables. One can see that all these obser
ables have pronounced peaks. Moreover, the peaks(Df
are clearly correlated with the peaks Bft). This is not 3 10
surprising, because according to E8) the observable is
proportional toz. In fact, only large peaks afare seen inw.
To characterize the peaks, one can consider a distribution o ©
times between them. If one, e.g., takes every maximum of
then this distribution is quite narrow, as the return times to
the Poncaresurface of section for the Reler system are
bounded (5.4 T<6.4 for the given parameterHence, the
absence of the intermittency is obvious. If some cut-off level ‘
is introduced and only large maxima are taken into account, .
the intervals between maxima can be large, but the distribu- 0 0 v 2000 3000
tion is nevertheless exponential, as is argued below. ¢

As for analytic arguments presented[Bl, one can men-
tion that their Eq.(1) is misleading, because the functions FIG- 2. (8) Instantaneous frequenay(t) of the Lorenz system
a(t) and B(t) cannot be considered a@-independent. computed according to E@4). (b) Instantaneous frequeney,(t)

Moreover, the statement that the mean values of these va/PPt@ined by means of the Hilbert transfofisee Eq.(5)]. Both

ables vanish is not correct ¢)~0.0825,( 8)~ — 0.16). estimates of the frequency provide consistent resalts, the mean

As the second example we consider the Lorenz model: :‘;?gfrg;gﬁzycomcndeand, contrary to the results ¢&], exhibit no

15

%(=10(y—z), pose that the intermittency reported in FigdRof [8] is
either an effect of numerical differentiation, or is due to not
dy fully correct application of the Hilbert transform method.
—— =28X—y—XZ ©) Indeed, for the correct determination of the phase, the origin

dt on the plane I(I[U], U) must lie in the “hole” of the phase
portrait projection on this plane. This is ensured if one

z
— = —8/3z+xy. choosesi=u—12 as we have done above. If, however, one

at takesu=u—(u), some trajectories pass through the origin
The phase portrait of this system in the variables Yielding spurious singularities of the instantaneous fre-
= x?+y?,z looks like rotations around a center placed nearduency.
u=12,z=27. One can introduce the phase a# Another indication of the absence of the intermittency in
the instantaneous frequency is obtained by characterization
of phase diffusion. If the frequency were intermittent, the
phase would not demonstrate the normal diffusion, but an
anomalous one. In Fig. 3 we show that phase dynamics of

= arctanEU), wherez=z—27,u=u—12. Then the instan-
taneous frequency is

~ ZuU—2zZ(xx+yy)

0= (4) the Lorenz system obeys the scaling of the usual diffusion
u(u+z9) ((A¢)?)= 7, contrary to the claims df] that the phase per-
Another possibility to compute the instantaneous 600 : : :
frequency—by means of the Hilbert transform—has been
suggested in3,5]. One can introduce the phase, e.g., as ol
¢y=arctanfH[u]/[u]), whereH denotes the Hilbert trans- A
form. (Certainly, one could shun the coordinate transforma- ’g 400+
tion and simply take the oscillatory observabjeve use the i
variableu to compare our results with those of Letial.[8].) S 100k
For correct computation of the instantaneous frequency, itis ¥ |
convenient to avoid numerically unstable differentiation of & 200
the phase and to use the formula ?
UHLG)— UH[ U] o
UH[u]—uH[u
“H= H T2 1,2 ] (5) 0 . 1 . 1 A 1 L
(H[uD)"+u 0 500 1000 1500 2000
T

based on the fact that the differentiation and the Hilbert
transform commute. We present the calculations of the fre- FIG. 3. The variance of the phase difference in the Lorenz sys-
quency according to Eq$4) and(5) in Fig. 2. One can see tem grows linearly with the time lag, as it should be for the
that both quantities demonstrate no intermittency. We suprormal diffusion.
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forms the fractional Brownian motion. The same is true forues of parameter&f. intermittent transition to chaos accord-
the Rasler system: the phase diffusion there is also normahg to Pomeau and Mannevillgl1], chaos-chaos intermit-
[5]. tency at crisig12], modulationalon-off) intermittency]{ 13—

We now discuss a general question, whether the appeatb], spatiotemporal intermittenchl6], eyelet intermittency
ance of peaks in the time course of some observables can b&7,18)). Typically, this criticality corresponds to a “order-
interpreted as an indication for some kind of intermittency.chaos” or “chaos-chaos” transition. Such a transition is ab-
Generically, the answer is negative. Indeed, let us for simsent in a general chaotic system under consideration.
plicity start with consideration of a discrete-time dissipative The situation does not change for typical continuous-time
chaotic system, and take as an observable the characteristitssipative systems: for these systems the return times of the
function of some small subset of the attractor. It means thalPoincaremap are bounded from below and from above, and
our observable is unity when the system visits some specifiethus the exponential decay of distribution of time intervals
tiny region in the phase space, and zero otherwise. Clearljpetween the peaks is preserved. This is the case for the
the time course of such an observable will demonstrate rarBossler system under consideration.
peaks. Nevertheless, due to mixing, the distribution of time The situation is slightly more complex for the Lorenz sys-
intervals between the peaks is exponenti@ry much simi-  tem, where the return times are not bounded from above, due
lar to the exponential distribution of escape times in a tranto slowing down of the motion along the trajectory near the
sient chaotic state, see, e.pl0]), i.e., the process can be saddle fixed point at the origin. This, however, does not lead
approximately considered as a Poissonian one. It is a mattéo intermittency, because the probability to have a large re-
of taste if one calls the Poissonian point process intermittenturn time is exponentially smal{and does not follow a
but we have never seen this in the literature. power law, as is claimed i8] in the caption to Fig. B

One usually speaks of intermittent dynamics in the situa- Thus, one can conclude that general observables of typi-
tions, where there exists a time sc@lisually the duration of cal chaotic systems are not intermittent. In particular, there is
the laminar phagethat tends to infinity at some critical val- no “intermittency in chaotic rotations.”
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