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Comment on ‘‘Intermittency in chaotic rotations’’
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Lai et al. @Phys. Rev. E62, R29~2000!# claim that the angular velocity of the phase point moving along the
chaotic trajectory in a properly chosen projection~the instantaneous frequency! is intermittent. Using the same
examples, namely the Ro¨ssler and the Lorenz systems, we show the absence of intermittency in the dynamics
of the instantaneous frequency. This is confirmed by demonstrating that the phase dynamics exhibits normal
diffusion. We argue that the nonintermittent behavior is generic.
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Phase dynamics of chaotic oscillators attracts a large
terest@1–7#. It was demonstrated that the behavior of ma
real-world and model autonomous chaotic systems can
regarded as oscillations with irregular amplitude and pha
The amplitude is chaotic, while the phase, as the varia
corresponding to the time shifts~and thus to the zero
Lyapunov exponent!, exhibits a random-walk-type motion
The mean velocity of the phase growth can be interprete
the mean frequency of the chaotic oscillator, and the dif
sion of the phase is due to fluctuations of the instantane
frequency.

Recently, Laiet al. @8# claimed that the dynamics of th
instantaneous frequency typically exhibits the on-off int
mittency. We note that speaking about ‘‘chaotic rotations
they consider not rotations in a physical space~e.g., rotations
of a mechanical pendulum!, but rotations of the phase poin
in a projection of a strange attractor, i.e., rotations here
the phase-space representation of chaotic oscillations.
et al. @8# state that the intermittency is an inherent gene
property of continuous-time chaotic systems. As examp
the Rössler and the Lorenz systems are considered in@8#. In
this Comment we argue that the dynamics of the insta
neous frequency is not intermittent both in the general ca
and in the mentioned examples in particular.

As the presence of intermittency in@1# is mainly argued
by means of the visual inspection of the time course of
instantaneous frequency, we first show that this inspectio
misleading. For this purpose we consider the Ro¨ssler system
with the same parameters (a50.165,b50.2, c510) as in
@1#

dx

dt
52y2z,

dy

dt
5x1ay, ~1!

dz

dt
5b1~x2c!z.
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If we introduce the phase asf5arctan(y/x), then the instan-
taneous frequencyv5ḟ is

v511
axy1yz

x21y2
, ~2!

i.e., the frequency is just an observable of the dynam
system~1!, and, generically, is neither better nor worse th
any other observable. To demonstrate that this observ
possesses no special intermittent properties, we plot in Fi

FIG. 1. The time dependencies of different observables for
Rössler system: instantaneous frequencyv(t) computed according
to Eq. ~2!, ex(t), z(t), and log10 z(t).
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its time dependence, together with time dependencies
some other observables. One can see that all these ob
ables have pronounced peaks. Moreover, the peaks ofv(t)
are clearly correlated with the peaks ofz(t). This is not
surprising, because according to Eq.~2! the observablev is
proportional toz. In fact, only large peaks ofz are seen inv.
To characterize the peaks, one can consider a distributio
times between them. If one, e.g., takes every maximum oz,
then this distribution is quite narrow, as the return times
the Poncare´ surface of section for the Ro¨ssler system are
bounded (5.4,T,6.4 for the given parameters!. Hence, the
absence of the intermittency is obvious. If some cut-off le
is introduced and only large maxima are taken into acco
the intervals between maxima can be large, but the distr
tion is nevertheless exponential, as is argued below.

As for analytic arguments presented in@8#, one can men-
tion that their Eq.~1! is misleading, because the function
a(t) and b(t) cannot be considered asV-independent.
Moreover, the statement that the mean values of these
ables vanish is not correct (^a&'0.0825,^b&'20.16).

As the second example we consider the Lorenz mode

dx

dt
510~y2z!,

dy

dt
528x2y2xz, ~3!

dz

dt
528/3z1xy.

The phase portrait of this system in the variablesu
5Ax21y2,z looks like rotations around a center placed ne
u512, z527. One can introduce the phase asf
5arctan(z̄/ū), wherez̄5z227, ū5u212. Then the instan-
taneous frequency is

v5
żuū2 z̄~xẋ1yẏ!

u~ ū21 z̄2!
. ~4!

Another possibility to compute the instantaneo
frequency—by means of the Hilbert transform—has be
suggested in@3,5#. One can introduce the phase, e.g.,
fH5arctan(H@ ū#/@ ū#), whereH denotes the Hilbert trans
form. ~Certainly, one could shun the coordinate transform
tion and simply take the oscillatory observablez; we use the
variableu to compare our results with those of Laiet al. @8#.!
For correct computation of the instantaneous frequency,
convenient to avoid numerically unstable differentiation
the phase and to use the formula

vH5
ūH@ u̇#2u̇H@ ū#

~H@ ū# !21ū2
, ~5!

based on the fact that the differentiation and the Hilb
transform commute. We present the calculations of the
quency according to Eqs.~4! and ~5! in Fig. 2. One can see
that both quantities demonstrate no intermittency. We s
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pose that the intermittency reported in Fig. 2~d! of @8# is
either an effect of numerical differentiation, or is due to n
fully correct application of the Hilbert transform metho
Indeed, for the correct determination of the phase, the or
on the plane (H@ ū#, ū) must lie in the ‘‘hole’’ of the phase
portrait projection on this plane. This is ensured if o
choosesū5u212 as we have done above. If, however, o
takesū5u2^u&, some trajectories pass through the orig
yielding spurious singularities of the instantaneous f
quency.

Another indication of the absence of the intermittency
the instantaneous frequency is obtained by characteriza
of phase diffusion. If the frequency were intermittent, t
phase would not demonstrate the normal diffusion, but
anomalous one. In Fig. 3 we show that phase dynamic
the Lorenz system obeys the scaling of the usual diffus
^(Df)2&}t, contrary to the claims of@9# that the phase per

FIG. 2. ~a! Instantaneous frequencyv(t) of the Lorenz system
computed according to Eq.~4!. ~b! Instantaneous frequencyvH(t)
obtained by means of the Hilbert transform@see Eq.~5!#. Both
estimates of the frequency provide consistent results~e.g., the mean
frequencies coincide! and, contrary to the results of@8#, exhibit no
intermittency.

FIG. 3. The variance of the phase difference in the Lorenz s
tem grows linearly with the time lagt, as it should be for the
normal diffusion.
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forms the fractional Brownian motion. The same is true
the Rössler system: the phase diffusion there is also nor
@5#.

We now discuss a general question, whether the app
ance of peaks in the time course of some observables ca
interpreted as an indication for some kind of intermitten
Generically, the answer is negative. Indeed, let us for s
plicity start with consideration of a discrete-time dissipati
chaotic system, and take as an observable the characte
function of some small subset of the attractor. It means
our observable is unity when the system visits some spec
tiny region in the phase space, and zero otherwise. Clea
the time course of such an observable will demonstrate
peaks. Nevertheless, due to mixing, the distribution of ti
intervals between the peaks is exponential~very much simi-
lar to the exponential distribution of escape times in a tr
sient chaotic state, see, e.g.,@10#!, i.e., the process can b
approximately considered as a Poissonian one. It is a m
of taste if one calls the Poissonian point process intermitt
but we have never seen this in the literature.

One usually speaks of intermittent dynamics in the sit
tions, where there exists a time scale~usually the duration of
the laminar phase! that tends to infinity at some critical va
tt
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ues of parameters~cf. intermittent transition to chaos accord
ing to Pomeau and Manneville@11#, chaos-chaos intermit
tency at crisis@12#, modulational~on-off! intermittency@13–
15#, spatiotemporal intermittency@16#, eyelet intermittency
@17,18#!. Typically, this criticality corresponds to a ‘‘order
chaos’’ or ‘‘chaos-chaos’’ transition. Such a transition is a
sent in a general chaotic system under consideration.

The situation does not change for typical continuous-ti
dissipative systems: for these systems the return times o
Poincare´ map are bounded from below and from above, a
thus the exponential decay of distribution of time interva
between the peaks is preserved. This is the case for
Rössler system under consideration.

The situation is slightly more complex for the Lorenz sy
tem, where the return times are not bounded from above,
to slowing down of the motion along the trajectory near t
saddle fixed point at the origin. This, however, does not le
to intermittency, because the probability to have a large
turn time is exponentially small~and does not follow a
power law, as is claimed in@8# in the caption to Fig. 3!.

Thus, one can conclude that general observables of t
cal chaotic systems are not intermittent. In particular, ther
no ‘‘intermittency in chaotic rotations.’’
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